Missing data analysis using multiple imputation: getting to the heart of the matter.

نویسنده

  • Yulei He
چکیده

Missing data are a pervasive problem in health investigations. We describe some background of missing data analysis and criticize ad hoc methods that are prone to serious problems. We then focus on multiple imputation, in which missing cases are first filled in by several sets of plausible values to create multiple completed datasets, then standard complete-data procedures are applied to each completed dataset, and finally the multiple sets of results are combined to yield a single inference. We introduce the basic concepts and general methodology and provide some guidance for application. For illustration, we use a study assessing the effect of cardiovascular diseases on hospice discussion for late stage lung cancer patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

چند رویکرد برخورد با مقادیر گمشده‌ متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی‌ بالینی

Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...

متن کامل

Accuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)

Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...

متن کامل

Primer on Statistical Interpretation or Methods Missing Data Analysis Using Multiple Imputation Getting to the Heart of the Matter

Missing data are a pervasive problem in health investigations. We describe some background of missing data analysis and criticize ad hoc methods that are prone to serious problems. We then focus on multiple imputation, in which missing cases are first filled in by several sets of plausible values to create multiple completed datasets, then standard complete-data procedures are applied to each c...

متن کامل

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

کاربرد جای گذاری چندگانه در تحقیقات پزشکی و اپیدمیولوژی

Data missing, which occurs for different reasons, is an unavoidable problem in epidemiological studies. It is quite widespread and, therefore, it is considered as a challenge in research design and data analysis by many methodologists. Complete case analysis is often used in studies with missing data however, this approach may result in inaccurate estimates and inferences due to bias associated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation. Cardiovascular quality and outcomes

دوره 3 1  شماره 

صفحات  -

تاریخ انتشار 2010